Surface auditory evoked potentials in the unrestrained rat: component definition.
نویسندگان
چکیده
Auditory evoked potentials (AEPs) to click and pure tone stimuli were recorded in unrestrained, unanesthetized rats. The middle latency rat AEPs (N17, P23, N38) had midline scalp distributions similar to human MAEPs and were recorded to within 15 dB above BAEP threshold. In contrast to human MAEPs, rat MAEPs were decreased in amplitude at high stimulation rates and only the N17 component was unaltered by slow wave sleep. The longer latency N50, N80 and P130 components had several response properties comparable to human N100-P200 vertex potentials. These included restricted midline fronto-central scalp distributions, progressive increases in amplitude at ISIs up to 4-8 sec and marked attenuation during slow wave sleep. The frequency sensitivity of the rat AEP revealed a decreased response to pure tones below 4 kHz but robust responses for stimuli up to at least 45 kHz. There was a notch in the rat audiogram with decremented component amplitudes to pure tone stimuli centered at 35 kHz. When equated for intensity, click and pure tone stimuli in the range of the rats maximal audiometric sensitivity (8-20 kHz) generated comparable AEP components. These results provide normative data on rat surface recorded AEPs. It is suggested that these surface recorded rat AEPs are generated by subcortical neural systems involved in the detection of auditory transients.
منابع مشابه
Multiple brain systems generating the rat auditory evoked potential. II. Dissociation of auditory cortex and non-lemniscal generator systems.
This study addressed the issue of multiple parallel auditory processing systems and their relationship to the skull-recorded auditory evoked potentials (AEPs) in the unanesthetized, unrestrained rat. In the preceding paper (Brain Res., 602 (1993) 240-250) it has been shown that auditory cortex activity does not contribute significantly to the vertex maximal AEPs recorded from the dorsal skull o...
متن کاملMismatch Responses in the Awake Rat: Evidence from Epidural Recordings of Auditory Cortical Fields
Detecting sudden environmental changes is crucial for the survival of humans and animals. In the human auditory system the mismatch negativity (MMN), a component of auditory evoked potentials (AEPs), reflects the violation of predictable stimulus regularities, established by the previous auditory sequence. Given the considerable potentiality of the MMN for clinical applications, establishing va...
متن کاملAltered peripheral and brainstem auditory function in aged rats.
A technique for conducting free-field brainstem auditory evoked potential (BAEP) audiometry in unanesthetized, unrestrained rats revealed a non-recruiting 18 dB elevation of click threshold in aged rats. BAEPs were first recorded in young and aged rats to clicks of equal intensity (80 dB SPL). Compared to the young group, aged animals exhibited longer wave I and wave IV latencies with no differ...
متن کاملImproved Estimation of Evoked Potentials Using an Iterative Independent Component Analysis Procedure
We have developed an iterative approach based on Independent Component Analysis (ICA) to obtain improved estimates of auditory evoked potentials (AEPs), which represent the electrical response of the brain to auditory stimuli. AEPs are often contaminated by artifacts which reduce the localization accuracy of the sources underlying the surface recordings. We use ICA to separate the activity of n...
متن کاملEffects of visual deprivation on epileptic activity in mature rat visual cortex
Effects of visual deprivation on the induction of epileptiform activity were studied in layer II/III of mature rat primary visual cortex. Field potentials were evoked by stimulation of layer IV in slices from control and dark-reared (OR) rats. Picrotoxin (PTX)-induced epileptic activity was characterized by spontaneous and evoked epileptic field potentials (EFPs). The results showed that OR s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electroencephalography and clinical neurophysiology
دوره 61 5 شماره
صفحات -
تاریخ انتشار 1985